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Abstract

The task of automatic text summarization produces a concise and fluent text sum-
mary while preserving key information and overall meaning. Recent approaches to
document-level summarization have seen significant improvements in recent years
by using models based on the Transformer architecture. However, the quadratic
memory and time complexities with respect to the sequence length make them very
expensive to use, especially with long sequences, as required by document-level
summarization. Our work addresses the problem of document-level summarization
by studying how efficient Transformer techniques can be used to improve the auto-
matic summarization of very long texts. In particular, we will use the arXiv dataset,
consisting of several scientific papers and the corresponding abstracts, as baselines
for this work. Then, we propose a novel retrieval-enhanced approach based on the
architecture which reduces the cost of generating a summary of the entire document
by processing smaller chunks. The results were below the baselines but suggest a
more efficient memory a consumption and truthfulness.*

1 Introduction

With the growth of publicly available text data, the summarization of such contents is essential for
their usefulness. A text summary must convey important information from the original text and
present a smaller, more manageable, size [1]. The task of automatic text summarization produces a
concise and fluent text summary while preserving key information and overall meaning [2].

Approaches to automatic text summarization can be divided into extractive and abstractive summa-
rization. While the extractive approach produces a summary that is comprised entirely of excerpts
from the original text, the abstractive approach generates an output that may contain content that
is entirely original. Both approaches have seen significant improvements in recent years by using
models based on the Transformer architecture [3]. In particular, the fluency of these language models
has allowed for state-of-the-art results for abstractive summarization [4–6].

However, Transformers’ quadratic memory and time complexities with respect to the sequence length
make them very expensive to use, especially with long sequences, as required by document-level
summarization. Recent approaches explore different attention mechanisms that are able to reduce the
quadratic cost, allowing to process longer sequences [7–9]. Additionally, retrieval-enhanced language
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models exhibit useful memorization qualities while being more efficient than plain models [10].
Although less explored, retrieval has been used to enhance an abstractive summarization model,
improving its performance [11].

Our work will address the problem of document-level summarization by studying how the afore-
mentioned techniques can be used to improve the automatic summarization of very long texts. In
particular, we will use the arXiv dataset, consisting of several scientific papers and the corresponding
abstracts. The results obtained with Efficient Transformers will be reproduced and used as baselines.
Then, we propose a novel retrieval-enhanced approach based on the RETRO architecture which
reduces the cost of generating a summary of the entire document by processing smaller chunks. All
of our implementations are open source and available in GitHub12.

2 Related Work

The Transformer architecture introduced in 2017 [3] established, within sequence modeling, an
alternative to Recurrent Neural Networks (RNNs). In fact, by processing sentences as a whole
using attention mechanisms and positional embeddings, Transformers avoid processing the input
recurrently, facilitating parallelization as well as handling long-context dependencies.

2.1 Long document summarization

Since most common Transformer models are pretrained for inputs of 256− 1024 tokens, and fine-
tuning them for longer sizes is computationally expensive, they seem unsuitable for the task of
summarizing entire documents. However, three different approaches to the standard Transformer that
allow for long-document summarization have been proposed: 1) divide-and-conquer, 2) hierarchical
attention mechanisms, and 3) sparse attention mechanisms.

The first approach builds upon the idea that long-document summarization can be decomposed into
shorter summarization problems, in which the task is tackled in a section-wise manner. Considering
that manually adapting training data to accommodate this methodology would not be feasible, Gidiotis
and Tsoumakas [12] designed a method to enable training in such a manner: rather than manually
summarizing each section of the document, the process is performed automatically using Divide-ANd-
ConquER (DANCER). This methodology is used to create artificial pairs of sections and abstract
segments for training, which are applied to a well-known encoder-decoder Transformer architecture,
PEGASUS [6]. Although this approach makes the model generalizable to theoretically infinite
documents, it fails to incorporate context from the other sections of the document. Furthermore, it
does not manage duplicate information when the set of summaries is concatenated.

Hierarchical attention, first introduced in the context of sequence classification [13], explores the
ambivalent relevance of each token according to the context they are in. The hierarchical attention
mechanism incorporates two levels of attention mechanisms [14, 15], one at the sequence level and
another at the word level. As such, the first level can identify which sequences of tokens (within a
sentence) are potentially relevant, significantly limiting the number of individual tokens that need
to be processed by the second level (full attention pattern). This mechanism was transposed to
long document summarization by Rohde et al. [16] with state-of-the-art results, although for input
sequences limited to approximately 3k (due to memory constraints).

Finally, sparse attention mechanisms directly tackle the issue of time and memory quadratic complex-
ity with sequence length. Instead of using a full attention pattern, primacy is given to the local context
(local attention window), while also incorporating some global attention elements that provide access
to the global context. This sparsity approach provides a considerable context of the full sequence
while significantly decreasing complexity. Beltagy et al. [17] and Zaheer et al. [18] propose drop-in
replacements for the standard attention mechanisms, reporting results for the standard Transformer [3]
and PEGASUS [6] architectures, respectively. Similarly, Guo et al. [19] extends the original T5
architecture [5] with an attention sparsity pattern, applied to the encoder layer only.

While all approaches achieved state-of-the-art performances on the arXiv dataset, not all models
are designed to handle the same input length, as illustrated in Table 1. Considering shorter input

1https://github.com/afonsocraposo/generation-baselines
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lengths as a limitation for the specific task of document-length summarization, the LongT5 approach
proposed in [19] reports the most satisfactory results in both domains (performance and input length).

2.2 Summarization datasets

Guo et al. [19] showcased six datasets for text summarization. These datasets can be divided into
two groups: the first, constituted by the CNN/Daily Mail [20], MediaSum [21], and Multi-News [22]
datasets, relates to news articles and media sources; the second, constituted by the PubMed [23],
arXiv [23], and BigPatent [24] datasets, relates to scientific and technical documents. Naturally, the
first includes shorter documents, with an average input length of 1,797 tokens, while the second group
includes longer documents, averaging 6,931 tokens (obtained with the SentencePiece tokenizer [25]).

Guo et al. [19] gather the summarization results of many state-of-the-art models, which are presented
in Table 1, along with a few details of the models. These are evaluated using the ROUGE automatic
metric [26] and considered baselines for this work. ROUGE works by measuring the overlap of
n-grams between the generated and reference summaries.

Table 1: Summarization results of several Transformer models evaluated in the arXiv dataset [23],
evaluated using the ROUGE automatic metric [26], as reported by Guo et al. [19].

Model Approach Input length R-1 R-2 R-L

DANCER PEGASUS [12] Divide-and-conquer N.A. 45.01 17.60 40.56
HAT-BART [16] Hierarchical attention 3k 46.68 19.07 42.17
LED [17] Sparse attention 16k 46.63 19.62 41.83
BigBird-PEGASUS [18] Sparse attention 4k 46.63 19.02 41.77
LongT5 [19] Sparse attention 16k 48.35 21.92 44.27

3 Efficient Transformer

A review of state-of-the-art approaches (Section 2) indicates that Transformer-based models with
sparse attention mechanisms are particularly well-suited for the task of summarizing long sequences.
Given the notable results reported by Guo et al. [19], our work focuses on the LongT5 model [19].

The LongT5 model aims to tackle the issue of the quadratic complexity of traditional attention
mechanisms. The proposed approach uses a Transient Global Attention mechanism as an alternative
to the attention pattern of the original T5 encoder architecture [5]. As illustrated in Figure 1, this
pattern gives primacy to neighboring tokens (through the use of a sliding window) while, at the same
time, incorporating global context through a set of dynamically constructed global tokens (Figure
1). This effectively reduces the time and memory complexity of input encoding from O(n × n)
to O(n × (r + n/k)) (where n is the input length, r is the width of the local window, and n/k
is number of global tokens). Since the output size in a document summarization is considerably
more manageable than its input size, this attention mechanism is not as important for the decoder
component, therefore, LongT5 simply leverages the original decoder from T5.

When applied to the task of document-level summarization using the arXiv dataset [23], the input of
the Transformer will be the entire document text (excluding everything before the Introduction and
after the Conclusion) and the ground truth summary will be the article’s abstract – Figure 2b. As a
first approach, a pretrained implementation of the LongT5 (LongT5-TGlobal-Large - 16k input)3 was
fine-tuned with the aforementioned arXiv dataset.

4 Retrieval-Enhanced Approach for Summarization

Instead of relying only on learned weights for memorization, combining neural networks with explicit
memories (e.g., through retrieval from a repository) is a possible way to decrease the number of
model parameters while obtaining comparable performance [10]. Historically, information retrieval
was performed using bag-of-words representations and functions like TF-IDF and BM25 [27]. More

3https://github.com/google-research/longt5

3

https://github.com/google-research/longt5


Figure 1: Illustration of the Transient Global Attention mechanism proposed to extend the standard
T5 encoder architecture. Obtained from Guo et al. [19].

recently, neural models trained to encode text into dense representations are able to capture implicit
semantics [28–30], with retrieval methods exploring these representations in dual-encoder or cross-
encoder settings [31].

One example of coupling an external memory with a neural model for text generation is the kNN-
LM [32], which builds a key-value database of context-token pairs and calculates the next-token
probability by interpolating a Transformer with a distribution calculated from the retrieved k nearest
neighbors. RAG [4] combines inputs and text retrieved using a dual-encoder, feeding both to a
decoder for generation. FiD [33] assumes a similar approach, scaling better to larger numbers of
retrieved passages. Combining kNN-LM and FiD, RETRO [10] retrieves chunks of text (neighbors)
whose dense representations are then processed independently in an encoder, and attended in a
chunked cross-attention (CCA) operation in a decoder. By processing the input in chunks, RETRO
avoids computing the quadratic attention over the entire document, by computing it only over the
chunks that the retrieval component considered relevant.

Our proposed approach, which we name RETROSUM, is to use a RETRO-based model to generate
a document summary, retrieving from a set of chunks obtained only from that document. Without
retrieval, the decoder would generate a summary-like text from a given prompt (e.g., paper title) –
Figure 2a. However, the generated text would be very imprecise/incorrect since the decoder would
not have any information besides the prompt. With retrieval, chunks of the generated text are used to
sequentially retrieve neighbors from the document text, which are encoded and attended to in the
CCA operation in the decoder – Figure 2c. With this approach, the decoder will be able to incorporate
the information from the document during the generation of the summary. Figure 2 illustrates three
different approaches to the task of document summarization of a scientific paper.

4.1 RETRO-fitting a baseline model

Although a RETRO-based model could be trained from scratch for abstractive summarization, ex-
tending baseline models into RETRO models offers a more efficient alternative – RETRO-fitting [10].
Starting from a pretrained Transformer, it is augmented with nearest-neighbor retrieval, a neighbor
encoder, and chunked cross-attention layers. During training, all parameters are frozen except the
neighbor encoder and the chunked cross-attention, ensuring that the original model performance is
maintained without retrieval.

Since RETRO works with chunks of a fixed size, the RETRO-fitting implementation is simpler if the
pretrained Transformer utilizes the same tokenizer as the encoder used for the nearest-neighbor search,
such that the number of tokens is the same throughout. In the original paper [10], RETRO tokenizes
the dataset using SentencePiece [25], but performs nearest-neighbor search using BERT [34], which
was originally implemented using WordPiece tokenization [35]. Thus, we assume that the authors
pretrained a BERT-like model using SentencePiece and, consequently, our design will have some
differences.
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Figure 2: Different Transformer-based approaches for document-level summarization of scientific
articles. The ground truth data is represented with uppercase letters while the generated data is
represented with lowercase letters.

5 Experiments

5.1 Experimental Setup

We focus on the arXiv dataset, which consists of scientific papers from the corresponding repository.
Being scientific papers, these documents follow a common structure: initial description of the
problem, methodology, experiments/results, and conclusions. A publicly available4 compilation of
215K docs was curated by Cohan et al. [23] and was used in this work. In this compilation, each
paper entry is represented in a JSON object with the following elements: article id, abstract text,
article text, section names, and sections. Some dataset statistics are shown in Table 2.

Table 2: Statistics for the arXiv dataset [23]. Tokens are obtained using SentencePiece [25].
Example count Input (document) length Output (summary) length

Train Validation Test Avg. # words Avg. # tokens Avg. # words Avg. # tokens

203,037 6,436 6,440 5,467 10,079 273 438

To automatically evaluate the summarization performance, we use the ROUGE-1, ROUGE-2, and
ROUGE-L metrics [26]. Since automatic metrics often do not correlate well with human judgment,
we also use BERTScore, which exploits pretrained models to measure semantic equivalence [36].

Disclaimer

We ran our experiments in a 5% subset of the original arXiv dataset. Given the time required to adapt
LongT5, implement the novel architecture of RETROSUM, and process each document (splitting into

4https://github.com/armancohan/long-summarization.git
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chunks, tokenization, and indexing), our available computational resources and time frame of this
work did not allow us to run experiments on the entire dataset. Nonetheless, we have experiments
running on the entire dataset.

5.2 LongT5

The LongT5 model is openly available by Google Research5. A converted HuggingFace checkpoint6
from the original Google checkpoint was used to fine-tune and test this model on the arXiv dataset.

We used the LongT5 TGlobal Base model, since it uses the new and improved attention mechanism,
Transient Global, and the number of training parameters, 247M, was supported by the GPUs available
to us. We used a Quadro RTX 6000 with 24 GiB of memory, allowing us to train with an input size
of 4096, output size of 512, and batch size 1 (gradients were accumulated over 32 steps). The model
was trained for 10 epochs with a learning rate of 10−4, using the Adafactor optimizer, and gradient
accumulation of 32 samples. As in similar works, we treated documents longer than the supported
length by truncating them to the maximum input size of 4096 tokens.

5.3 RETROSUM

Our implementation follows the RETRO-fitting approach, using the encoder and decoder models of
a pretrained T5-Base model [5]. As in the original paper, it starts by tokenizing the dataset using
SentencePiece and making up chunks of 64 tokens, for every abstract and articles’ text. Using a
frozen Sentence-T5 encoder [37], dense vectors/embeddings (d = 768) are computed for each chunk
of text. Then, AutoFaiss7 is used to index the text chunks embeddings of each document and to
retrieve the 2 nearest-neighbors for each abstract chunk embedding. Since this approach generates a
different index for each document, the retrieval step is much quicker than if retrieved from a collection
of text chunks of all documents.

As for the Encoder and Decoder models (Figure 2c), they are implemented using the (unofficial)
implementation in the RETRO - Pytorch library8. The weights of the T5 parameters were copied
to a RETRO model, which additionally has chunked cross-attention layers introduced in every 3rd

layer, starting from 6, of the 12-layer T5 decoder (as suggested by Borgeaud et al. [10]). At last, the
retrieved neighbors are encoded using the T5 encoder and attended to in the T5 decoder augmented
with chunked cross-attention layers.

The proposed model was trained and evaluated on the arXiv dataset. We evaluate RETROSUM with
and without retrieval, prompting our model with the articles’ titles, as illustrated in Figures 2a and 2c.
Plots of the train and validation losses for each approach are shown in Figure 3, which suggest that
the model starts overfitting in the training data after a few epochs (expected given the small size of
the subset we considered).

5.4 Results

After training our implementations of the LongT5 and RETROSUM models, we evaluated them in the
test sets of the arXiv dataset, reporting the automatic metrics ROUGE and BERTScore in Table 3.

With our implementation of the LongT5 model, we intended to replicate the results reported by Guo
et al. [19]. We evaluated the base LongT5 model fine-tuned with input lengths of 4k. Our model
performance in terms of ROUGE was below the one reported in the original LongT5 paper. This was
most probably caused by the inferior batch size and subset we used during training. However, its
performance was greater than that of the baseline pretrained summarization model PEGASUS [6].
Additionally, we also report its BERTScore for the arXiv dataset.

Regarding our proposed model RETROSUM, the results we obtained were lower than anticipated.
Although there was a slight improvement when introducing the retrieval component, both results
were below the ones of LongT5 and PEGASUS. In addition to the smaller subset used for training, the
performance may be affected by empoying the base T5 model in a different configuration than it was

5https://github.com/google-research/longt5
6https://huggingface.co/Stancld/LongT5-TGlobal-Base
7https://github.com/criteo/autofaiss
8https://github.com/lucidrains/RETRO-pytorch
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Figure 3: Train and validation losses of RETROSUM trained on the arXiv dataset.

Table 3: Summarization results comparing the reference LongT5 fine-tuned with the arXiv dataset by
Google and the LongT5 HuggingFace implementation fine-tuned by us. All LongT5 scores are with
models using TGlobal attention, an input length of 4096 and output length of 512.

Model Input length R-1 R-2 R-L BERTScore

PEGASUSbase [6] 1k 34.81 10.16 22.50 -
LongT5 [19] 4k 44.87 18.54 40.97 -

LongT5 (ours) 4k 39.55 13.13 21.74 85.30
RETROSUM (w/o retrieval) any 31.32 10.85 21.17 83.37
RETROSUM (w/ retrieval) any 31.96 11.76 22.28 83.67

pretrained on: instead of using it as an encoder-decoder model, its modules were isolated and it is the
decoder that actually is fed the model input.

As for the reported BERTScore values, we were unable to compare them against other baselines.
Nonetheless, we consider this automatic metric to be of great relevance to this summarization task
since it is more sensible to the semantics of the text instead of small variances in the wording used [36].
This is particularly useful given that there are many alternatives to writing an article abstract. A few
examples of the generated abstracts and corresponding references are given in Appendices A and B.

Nonetheless, this approach allows for a more efficient memory consumption, since the documents are
processed in chunks of 64 tokens (only two neighbor chunks at a time) and the decoder input length
will, at most, correspond to the length of the title concatenated with the abstract (around 438 tokens –
Table 2). Moreover, the introduced chunked cross-attention operations have approximately the same
overhead as normal cross-attention layers, thus, our RETROSUM model has a size similar to the base
pretrained model.

6 Conclusions and Future Work

In this work we propose a novel model for document summarization, derived from the RETRO
architecture [10]. Our model, RETROSUM, tackles the issue of long input sequences by splitting
the documents into chunks and using a retrieval component to select which chunks to pay attention
to during decoding. Other approaches that process each document in its entirety adopt different
attention mechanisms, in order to avoid the quadratic memory cost over the input sequence length. In
particular, we focus on the LongT5 model [19] and attempt to replicate the results reported by Guo et
al. The implementations we detail in this work are also made publicly available.
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We fine-tuned both models in the arXiv dataset and evaluated them using the ROUGE and BERTScore
automatic metrics. As for our implementation of LongT5, the obtained results were below those
reported in its original paper, where the authors were able to use the complete dataset for fine-
tuning. Regarding RETROSUM, we performed two different experiments: with and without retrieval.
Although its performance on the automatic metrics was lower than the baseline models, there was
a slight increase in performance when performing retrieval. Moreover, RETROSUM is able to
summarize documents of any size with a small memory footprint, since it does not compute attention
scores over the entire document, but over smaller chunks instead.

In future work, the proposed RETROSUM model shall be trained in the entire arXiv dataset, for a
fairer comparison with the presented baselines. Furthermore, a human evaluation of the reference and
predicted abstracts would be helpful to evaluate the generated abstracts in terms of paraphrases, the
truthfulness of the reported information, completeness, and overall structure of the abstract, which
are important quality characteristics not captured with automatic metrics. Regarding truthfulness, the
retrieval-enhanced approach should provide more accurate results since the information is provided
explicitly [38]. Given the versatility of RETROSUM, other base models could be experimented.
Instead of RETRO-fitting with a T5 encoder-decoder, an encoder-only model and a decoder-only
model might result in better performance when used as base models, due to closer proximity to their
pre-training objectives. At last, exploiting the high-level structure of the articles (provided by their
sections) to guide the summarization models might improve the quality of the generated abstracts.

7 Author Contributions

Gonçalo Raposo developed and implemented the architecture of the proposed RETRO-based model
and ran the corresponding experiments. This consisted in adapting a non-official PyTorch implemen-
tation of the RETRO model and implementing the train, validation, and test loops. Moreover, the
arXiv dataset had to be pre-processed (e.g., divided into chunks, tokenized, etc.) and then indexed,
for what Sentence-T5 and AutoFaiss were used. Since the overall approach is different from RETRO
(instead of retrieving from a large collection of chunks, the model retrieves only from chunks of a
particular document), its forward implementation had to be adapted. At last, the results were analyzed
using ROUGE and BERTScore automatic metrics. As for the report, Gonçalo covered all the sections
referring to RETRO and retrieval.

Afonso Raposo parsed the arXiv dataset (tokenization) and adapted the LongT5 model to a PyTorch
Lightning module using the openly-available HuggingFace implementation. Since the HuggingFace
is an unofficial implementation, some minor bugs in the model had to be fixed. The implemented
model training was tested with various training parameters for a period of multiple consecutive days,
resulting in the (best) results showcased in this report. The implemented model was then tested using
the ROUGE and BERTScore automatic metrics. As for the report, Afonso covered the sections
referring to the Experimental Setup, LongT5 Experiments and Results, and Appendix.

Ana Sofia Carmo performed the literature review and prepared both the visual and informational
contents for presentation.
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A LongT5 Results

Table 4: Examples of predicted abstracts obtained using the LongT5-base model fine-tuned on the
arXiv dataset for the task of document-level summarization.

Reference Prediction

1307.2735: An Efficient Multiplication Algorithm Using Nikhilam Method

multiplication is one of the most important op-
eration in computer arithmetic. many integer
operations such as squaring, division and com-
puting reciprocal require same order of time as
multiplication whereas some other operations
such as computing gcd and residue operation
require at most a factor of @xmath0 time more
than multiplication. we propose an integer mul-
tiplication algorithm using nikhilam method of
vedic mathematics which can be used to mul-
tiply two binary numbers efficiently. integer
multiplication, algorithm, computer arithmetic,
vedic mathematics, computation

we propose a fast integer multiplication algo-
rithm which converts small to medium size in-
puts into linear - digit multiplication. instead of
classical method, we use the nikhilam sutra or
method from vedic mathematics. it performs an
efficient multiplication for small to medium size
numbers and converts it to some addition and
shift operations. some applications are given
that using this method to perform efficient mul-
tiplication for medium to large inputs is also
possible.

0811.2070: Factorizing numbers with classical interference: several implementations in optics

truncated fourier, gauss, kummer and exponen-
tial sums can be used to factorize numbers :
for a factor these sums equal unity in absolute
value, whereas they nearly vanish for any other
number. we show how this factorization algo-
rithm can emerge from superpositions of clas-
sical light waves and we present a number of
simple implementations in optics.

in this paper we investigate how truncated
fourier, gauss, kummer and exponential sums
can emerge within a quantum system. they can
be used successfully to factorize numbers in
many physical cases. we can extend it to virtu-
ally any physical system where superposition
among several different oscillations appear. we
give examples of oscillations with different am-
plitudes, phases, and amplitudes in wave optics
and study their ability to factorize numbers.
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Reference Prediction

1512.09139: Probing circular polarization in stochastic gravitational wave background with

pulsar timing arrays

we study the detectability of circular polariza-
tion in a stochastic gravitational wave back-
ground from various sources such as supermas-
sive black hole binaries, cosmic strings, and
inflation in the early universe with pulsar tim-
ing arrays. we calculate generalized overlap
reduction functions for the circularly polarized
stochastic gravitational wave background. we
find that the circular polarization can not be de-
tected for an isotropic background. however,
there is a chance to observe the circular polar-
ization for an anisotropic gravitational wave
background. we also show how to separate po-
larized gravitational waves from unpolarized
gravitational waves.

we investigate the detectability of circular po-
larization in the stochastic gravitational wave
background ( sgwb ) generated by pulsar timing
arrays. we examine how the generalized overlap
reduction functions for the @xmath2 mode can
detect the circular polarizations and determine
a separation method which separates the inten-
sity and circular polarization of sgwwb. i give a
separation method for separating the intensity
( @xmath3 mode ) and circular polaristic back-
ground ( @xmathe2 mode ) of the sgwbab. this
method is consistent with the results of previ-
ous work and provides the information needed
to separate the intensity ( @math3 mode) and
circular Polarization ( @xmatha2 mode ). the
results for @xmath2- mode are consistent with
the previous work. separation method is also
discussed for separating the @xmatrh3 mode
and @xmath1 mode of the syndrome. in this
paper, we develop a method for separation be-
tween a mode @xmath3, and a mode @math2
of the ssyndrome on an interferometer detector.
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B RETROSUM Results

Table 5: Examples of predicted abstracts obtained using the RETROSUM model (with and without
retrieval) fine-tuned on the arXiv dataset for the task of document-level summarization.

Reference
RETROSUM

without retrieval

RETROSUM

with retrieval

1307.2735: An Efficient Multiplication Algorithm Using Nikhilam Method

multiplication is one of the
most important operation in
computer arithmetic. many in-
teger operations such as squar-
ing, division and computing
reciprocal require same or-
der of time as multiplication
whereas some other operations
such as computing gcd and
residue operation require at
most a factor of @xmath0 time
more than multiplication. we
propose an integer multiplica-
tion algorithm using nikhilam
method of vedic mathematics
which can be used to multi-
ply two binary numbers ef-
ficiently. integer multipli-
cation, algorithm, computer
arithmetic, vedic mathematics,
computation

this paper considers maximum
code error problems, short
times problems, and classi-
cal proofs using non - effi-
cient algorithms. it is proved
that these symbolic signals are
false if and only if the algo-
rithm uses the ancillated solu-
tion. in addition, it can be com-
pared to counter schemes to
deal with convergence strictly
positive or positive results in
time, total code error. we con-
sider several examples that pre-
dict the efficiency of our algo-
rithm. efimov - tootto concen-
tration for two zero code pro-
cedures is applied to a two ter-
minal network of two postal
products, no - cloak maps and
no - node minimum code er-
ror flux for two objectives, but
no - rate sparer coding algo-
rithm. * keywords : * area
reduction 05.10./1ja matrices,
least squares for two zero and
weighted maximum code error
problem * 35a10.52b, 51d15,
65s10.

this paper studies a multiplica-
tion algorithm which utilizes
multiplication algorithms by
bigraphs computation ( bwt
). in computing this sym-
bol, the bwt is a large in-
terval, whose size is usually
comparable to @xmath0 or
@xmath1 with the size of the
cell ( allowed by some lapla-
cian ). bwt in terms of cer-
tain other functions is based on
@xmath1 factors by extending
the well known present upper (
biased ) correlation function of
@xmath2 to @xmath3 factors
which is obtained by expecta-
tion - free multiplication algo-
rithms. in this paper, we ex-
tend the being able to find sev-
eral simulation sets by agn in-
volving advanced algorithmic
andpi algorithms.
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Reference
RETROSUM

without retrieval

RETROSUM

with retrieval

0811.2070: Factorizing numbers with classical interference: several implementations in optics

truncated fourier, gauss, kum-
mer and exponential sums can
be used to factorize numbers
: for a factor these sums
equal unity in absolute value,
whereas they nearly vanish
for any other number. we
show how this factorization al-
gorithm can emerge from su-
perpositions of classical light
waves and we present a num-
ber of simple implementations
in optics.

meta - sommerfeld - mathiee -
metric spaces ( fmsfs ) are used
to make factorization compu-
tations based on specific input
coordinates. the fractional fac-
torization factorization is de-
fined in the various unitary
transformations of nondisinte-
grable spacetimes. the cur-
rent literature literature has let-
ter ” lengthregressive orthog-
onal operations, namely, fac-
torization in order to exploit
signal distortion, dependent on
benchmarking and the aver-
age weight of the frequency.
this article is weft - based in
providing a study of the as-
sociated factorization factors
and regulators in the genera-
tion of fmsfs. the coefficient,
bloch length, integral represen-
tation, sample size, sum of the
cases defined in the literature,
fmsf spatial dimension reduc-
tion ( gray ) method, exponen-
tial function, mean ansatz, ran-
dom variable theory of gener-
alization.

by graphical analysis we pro-
vide estimates on both the
statistics of the variance in
the probability density due to
coupling constants with three
parameters : an exponential
square function(00 ) and a
quadratic decoding of the dif-
ference operator @xmath0. we
present in detail an applica-
tion to several explicit formu-
las of grfs in the stellar pa-
rameters by construction, at
least in some cases both ab-
solutely maximum and mini-
mum. methods : statistics of
nature : statistical theory, sta-
tistical mechanics, generality.
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Reference
RETROSUM

without retrieval

RETROSUM

with retrieval

1512.09139: Probing circular polarization in stochastic gravitational wave background with

pulsar timing arrays

we study the detectability
of circular polarization in a
stochastic gravitational wave
background from various
sources such as supermassive
black hole binaries, cosmic
strings, and inflation in the
early universe with pulsar
timing arrays. we calculate
generalized overlap reduction
functions for the circularly po-
larized stochastic gravitational
wave background. we find that
the circular polarization can
not be detected for an isotropic
background. however, there
is a chance to observe the
circular polarization for an
anisotropic gravitational wave
background. we also show
how to separate polarized
gravitational waves from
unpolarized gravitational
waves.

we study the temporal varia-
tion of circular polarization in-
duced by a pulsar recombinat-
ing in a lane. using subse-
quent multi - mode gamma -
ray burst observations of the
pulsar bowen blend of lensing,
we show that temporal corre-
lations on flat finite time op-
tical pulses can be discerned
in nearly parallel optical pul-
sars. we show that when such
temporal correlations are im-
perfect, temporal correlations
with the instrument are more
common in relativistic gravita-
tional wave regime.

we decyclize the irregular trav-
eling wave ( axial ) dark energy
of a mean - field pattern of el-
lipsoid @xmath0 functions for
a system of two photons in a
simulated model. we account
for the position of a bright
single - photon source with a
mode @xmath1. for a range of
parameters @xmath2 account-
ing for pulsar signal below
which the interstellar medium
becomes two, ocd may other-
wise not directly irradiate to
the observer. we show that a
closed form backreaction, in
a model that reproduces the
waves, can appear on the en-
tire wave spectrum of the ob-
served system. the addition of
amplitude of the axial velocity
of the polarisation could affect
model evolution, and alterna-
tively solve the space - time
geometry for the wave prop-
agation problem. the strong
and weak ocd dynamics of a
system of equatorial polarisa-
tion and spatial velocities sug-
gest that the parameters depen-
dent on the wave spectrum of
a physical polarization are cor-
related with the shape of the
polarized sources.
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